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Abstract

We consider the problem of a robot manipulator operating in
a noisy work space. The robot is assigned the task of moving
from Pi to Pf. Because Pi is its initial position, this position
can be known fairly accurately. However, because Pf is usu-
ally obtained as a result of a sensing operation, possibly
vision sensing, we assume that Pf is noisy. We propose a so-
lution to achieve the motion that involves a new learning
automaton, called the Discretized Linear Reward-Penalty
(DLRP) automaton. The strategy we propose does not involve
the computation of any inverse kinematics. Alternatively, an
automaton is positioned at each joint of the robot, and by
processing repeated noisy observations of Pf the automata
operate in parallel to control the motion of the manipulator.

1. Introduction

Robotics is probably one of the most fascinating and
interesting areas of engineering and computer science.
Not only is it an area of great importance economi-
cally, but as a research area, robotics encompasses
such fields as kinematics, mechanics, computational
geometry, controls, and language design.
One of the most interesting areas in robotics is the

study of the problem of navigating a robot (or a ma-
nipulator) within a work space. When the robot has no
obstacles to avoid and is operating in a noise-free work
space, the problem is essentially a control problem.
Solutions usually involve joint interpolated motions
when the trajectory is not necessarily linear, and mo-
tions computed using recursive algorithms (such as
Taylor’s algorithm) if the path desired is linear. How-

ever, the problem is far more complex if the robot (or
manipulator) has to plan its motion when there are
obstacles in its work space or if the work space is noisy.
The initiator for the work in motion planning

amidst obstacles was probably Udupa (1977). He in-
troduced the concept of working in configuration
space, and this was later studied extensively by many
researchers (Lozano-Perez and Wesley 1979; Brady et
al. 1983; Lozano-P6rez 1983; Brooks and Lozano-
P6rez 1985). Simultaneously, a variety of results con-
cerning the theoretical issues of motion planning were
presented by other researchers (Schwartz and Sharir
1983; Schwartz and Yap 1987). The literature in this
field is extensive, and we refer the reader to two com-
prehensive surveys of the results in the area: White-
sides (1985) and Schwartz and Yap (1987). We
strongly recommend these surveys for a researcher
who is just embarking on working in this field.
Whereas the problem of moving a single mobile

robot in known terrains was almost completely inves-
tigated, the problem of navigating in unknown ter-
rains was almost completely untouched until the past
few years. The study of the problem of navigating
mobile robots sparked a whole series of very interesting
results. Learned paths were suggested by Iyengar and
colleagues (Iyengar et al. 1985a), who also suggested
using learned spatial graphs (Iyengar et al. 1985b) to
compute the robot’s path. Oommen et al. (1987) pre-
sented a formal approach to tackling the problem
using learned visibility graphs. Although their solution
was suitable only for a point robot, we believe that it is
conceptually an ideal working model, inasmuch as the
fact that the learned visibility graph actually converges
to the actual visibility graph. Alternate solutions for
practical robot navigation systems have been proposed
that involve map making (Brady et al. 1983), environ-
ment learning (Chatilla 1982), terrain discretization
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(Crowley 1985), and the use of multilevel planning
(Giralt et al. 1979). Other papers involving mobile
robots are those of Gouzenes (1984) and Chattergy
(1985).
The subsequent question of much importance has

been that of navigating (or moving) multiple objects.
Schwartz and Sharir (1983) presented an analytic solu-
tion for the special case in which the objects to be
moved were circular and the obstacles were polygonal.
This problem is currently being studied by a number
of researchers. Suffice it to say that the general prob-
lem of coordinating the motion of multiple indepen-
dent objects was shown (Hopcroft et al. 1984) to be
PSpace-Hard. From a practical viewpoint, Grossaman
et al. ( 1985) of IBM considered the value of using
multiple independent robot arms. Clearly this &dquo;value&dquo;

depends on the criterion function used to evaluate the
performance of the multiple robots. Based on the cri-
teria investigated, they concluded that in both one and
two dimensions there is &dquo;little merit&dquo; in having more
than two arms.

Although the body of work done in the area of ro-
botics and motion planning is extensive, the work
concerning operating robots in real-life work spaces
subject to noisy and inaccurate measurements is still
in its infancy. Indeed, as Lozano-P6rez remarked in an
opening address of the 1985 SIAM Conference on
Robotics and Geometric Modeling (Kozlov 1985):
&dquo;Nothing is ever where it is supposed to be-is the
first law of Robotics.&dquo; He went on to say that &dquo;one is

lucky to find one paper&dquo; on the topics of planning
error and planning sensing strategies. In a personal
communication, Lozano-P6rez wrote, &dquo;Error is the
central problem in robotics, but it often gets left be-
hind in the problem formulation.&dquo; This indeed is true.

In this article we will concentrate on the problem of
controlling a robot manipulator in a noisy work space.
If the robot is a mobile robot and the obstacles are
fixed but unknown, a learning strategy can be used to
learn the model of the world during (or alternatively
prior to) the navigation process (Chatilla 1982; Iyengar
et al. 1985a,b; Rao et al. 1985). However, even in this
case, the problem has been only marginally studied
when the observations obtained by the (vision or
sonar) sensors are erroneous. However, when the robot
is not mobile and the manipulator joints themselves
have to be considered, the problem has a different flavor.

1.1. Problem Statement and Brief Survey of S’olutions
In this article we consider the problem of a multilink
robot manipulator operating in a noisy work space in
which the joints of the robot can be prismatic and
revolute. The robot is positioned at a configuration P,,

which fully describes the position and orientation of
its end effector. The robot is commanded to move to a

configuration P f inside the work space. P f represents
the desired ultimate position and orientation of the
end effector. Because Pi is completely defined by the
joint angles of the manipulator, it is not unrealistic to
assume that it can be obtained to any desired degree
of accuracy. However, because the accuracy of Pr, the
goal position, cannot be arbitrarily specified by the
designer of the manipulator, it is conceivable that the
robot may be asked to move to a noisy version of the
configuration, Pf. This is especially true if the latter
configuration is obtained as a result of a sensing process
-customarily a vision sensing process. The problem
that we tackle in this article is indeed that of moving
the robot from Pi to P f, where P f is a fixed but un-
known vector, which is unobservable. However,
{Q f(n)) is a sequence of observable points where

Qf(n) = Pf+ r¡
and p is an i.i.d. random vector. It is intended that the
controller operates by processing Pi and {Q f(n)}.

Earlier, Azadivar (1987) studied the problem of
incorporating the positional error associated with the
individual joints of the robots in the motion planning.
He did this by actually estimating success and failure
parameters which fed into his optimization and feed-
back control loop. Arimoto and others (1985) studied
mechanical and mechatronics systems with linear and
nonlinear dynamics that may be operated repeatedly
at low cost. Given a desired output yd over a finite
time duration [0,T] and an appropriate input uo, these
laws are formed by the following simple iterative pro-
cesses :

where uk and uk+ denote the kth and (k + l)st input
values, O and r are positive-definite constant gain
matrices, and yk is the measured output at the kth time
instant. Arimoto et al.’s work (1985) showed that law
1 with an appropriate gain matrix (D is convergent in
the sense that ydt) approaches Yd(t) as k -~ ~ in the
meaning of the L2[0,T] norm if the objective system is
linear and strictly positive. The same conclusion was
proved when the system was subject to a linear time-
invariant or time-varying mechanical system. In addi-
tion, a rough sketch of the convergence proof for the
second and third learning control laws was presented
for a class of linear and nonlinear dynamic systems.

Craig et al. (1986) presented an adaptive version of
the computed-torque method for the control of ma-
nipulators with rigid links. The algorithm estimated
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parameters online that appear in the nonlinear dy-
namic model of the manipulator (e.g., load and link
mass parameters and friction parameters) and used the
latest estimates in the computed torque servo. The
authors proved the global convergence and stability of
such a scheme in its nonlinear setting, as well as its
asymptotic properties and derived the conditions for
parameter convergence.
Koivo and Guo (1983) presented a new approach to

the position and velocity control of a manipulator by
using an adaptive controller of the self-tuning type for
each joint. The complicated manipulator system was
modeled by a set of time series difference equations.
The parameters of the models were determined by
online recursive algorithms that resulted from mini-
mizing the sum of the squared errors. The adaptive
controller of each joint was designed on the basis of the
difference equation model and a chosen performance
criterion function. The controller gains were then
computed online using the model with the estimated
values of system parameters. Later, Koivo (1986) stud-
ied the force-path control of a robotic manipulator in
both the joint and the Cartesian coordinate systems.
An autoregressive model with external excitation
(ARX-model) was introduced for designing an adap-
tive controller with self-tuning. The controller mini-
mized the conditional expectation of the sum of a
quadratic position (velocity) error and a quadratic
force error while satisfying the constraint of the ARX-
model in which the estimated parameters were substi-
tuted for the unknown parameters. The basic ap-
proach was used to obtain an adaptive controller that
operated on the variables that were expressed in terms
of the joint coordinates. Another adaptive controller
was similarly determined for the system variables ex-
pressed in terms of the Cartesian coordinates. The
adaptive controller for force-path control in this work
(Koivo 1986) has a form similar to that of a hybrid
force/position controller, but the former has time-
varying gains.
Going deeper into the traditional control systems

concepts, Miller (1987) described a practical learning
control system that is applicable to the control of
complex robotic systems involving multiple feedback
sensors and multiple command variables during both
repetitive and nonrepetitive operations. In his con-
troller, Miller used a general learning algorithm to
learn to reproduce the relationship between the sensor
outputs and the system command variables over par-
ticular regions of the state space of the system. The
learned information was then utilized to predict the
command signals required to produce desired changes
in the sensor outputs. The learning controller required
no a priori knowledge of the relationships between the

sensor outputs and the command variables, thus facili-
tating the modification of the control system for spe-
cific applications.
The previous algorithms are just a few representative

examples of solutions that are applicable to the prob-
lem we are studying. Indeed, any of the solutions
found in traditional textbooks on optimal control and
adaptive control can also be tailored to solve this par-
ticular problem.

In this article, we suggest a solution to the problem
and consciously try to disengage ourselves from the
traditional concepts of closed-loop feedback control
theory. By this, we do not imply that the latter schemes
are inferior. However, we aim to arrive at a solution
that involves absolutely no estimation of parameters,
absolutely no inverse kinematic computations, and no
feedback control that is &dquo;hardware&dquo; oriented (i.e., that
requires the tuning of servocontrollers, etc.). More
importantly, apart from the scheme being computa-
tionally attractive, the solution is highly parallelizable.
The strategy that we propose to employ involves

using learning automata. Learning automata have
been extensively studied in the literature and have
been used to model biologic mechanisms. They have
also been used in pattern recognition, optimization,
game playing, and more recently even in object parti-
tioning. These automata interact with an environ-
ment, and based on the responses of a noisy environ-
ment they attempt to learn the optimal action offered
by the environment.
We propose to use a learning automaton at every

joint of the robot manipulator. This indeed involves
merely maintaining a Finite State Machine at each
joint, which dictates the motion that the particular
joint has to make. Without using any other feedback
arrangement except repeated noisy observations of Pf,
we propose to control the motion of the manipulator.
Further, the control of the individual joints is achieved
by having the automata operate in parallel. Finally,
the feedback computations involved are of an elemen-
tary sort-they involve updating the states of the
Finite State Machine.

In the next section we will discuss the elementary
concepts of learning automata and discuss in detail the
automaton that we use in this problem. We then dis-
cuss the use of the automata in the field of robotics.

2. Learning Automata

Learning automata have been extensively studied by
researchers in the area of adaptive learning. The inten-
tion is to design a learning machine that interacts with
an environment and dynamically learns the optimal
action that the environment offers. The literature on
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learning automata is extensive. We refer the reader to
the work of Narendra and Thathachar (1974, 1989)
and Lakshmivarahan ( 1981 a). The last reference also
discusses in fair detail some of the applications of
learning automata, which include game playing, pat-
tern recognition and hypothesis testing, priority as-
signment in a queueing system, and telephone routing.
Other applications include the solution of stochastic
geometric problems using learning automata (Oom-
men 1986a) and the partitioning of objects using var-
ious types of automata (Oommen and Ma 1987).

Broadly speaking, learning automata can be classi-
fied into two categories: Fixed Structure Stochastic
Automata (FSSA), and Variable Structure Stochastic
Automata (VSSA). An FSSA is one whose transition
and output functions are time invariant. Examples of
such automata are the Tsetlin, Krylov, and Krinsky
automata (Tsetlin 1961, 1973). By far, most of the
research in this area has involved the second category,
namely VSSA. Automata in this category possess tran-
sition and output functions that evolve as the learning
process proceeds. It can be shown that a VSSA is com-
pletely defined by a set of action probability updating
functions (Varshavskii and Vorontsova 1963; Naren-
dra and Thathachar 1974, 1989).
VSSA are implemented using a Random Number

Generator (RNG). The automaton decides on the
action to be chosen based on an action probability dis-
tribution. Nearly all the VSSA discussed in the litera-
ture permit probabilities that can take any value in the
range [0, 1]. Hence the RNG must theroretically pos-
sess infinite accuracy. In practice, however, the proba-
bilities are rounded off to a certain number of decimal
places depending on the architecture of the machine
that is used to implement the automaton.
To minimize the requirements on the RNG and to

increase the speed of convergence of the VSSA the
concept of discretizing the probability space was re-
cently introduced in the literature (Oommen and
Hansen 1984; Oommen and Christensen 1988). As in
the continuous case, a discrete VSSA is defined using
a probability updating function. However, as opposed
to the functions used to define continuous VSSA,
discrete VSSA utilize functions that can only assume a
finite number of values. These values divide the inter-
val [0, 1 ] into a finite number of subintervals. If the
subintervals are all of equal length the VSSA is said to
be linear. Using these functions discrete VSSA can be
designed-the learning being performed by updating
the action probabilities in discrete steps.

Learning automata can also be broadly classified in
terms of their Markovian representations. Generally
speaking, learning automata are either ergodic or pos-
sess absorbing barriers (Lakshmivarahan 19$1; Naren-

dra and Thathachar 1989). Automata in the former
class converge with a distribution that is independent
of the initial distribution of the action probabilities.
This feature is desirable when interacting with a non-
stationary environment, for the automaton does not
&dquo;lock itself&dquo; into choosing any one action. However, if
the environment is stationary an automaton with an
absorbing barrier is preferred. Various absolutely expe-
dient schemes that ideally interact with such environ-
ments have been proposed in the literature (Lakshmi-
varahan and Thathachar 1973; Lakshmivarahan 198I;
Narendra and Thathachar 1989).

In this article we will present a discretized automa-

ton, some of whose analytic properties have been in-
troduced in the literature (Oommen and Christensen
1988). This machine is the Two-Action Discretized
Linear Reward-Penalty (DLRP) automaton. We shall
state the principal property of the automaton, which is
that the machine is ergodic and e-optimal in certain
restricted random environments. Indeed this is the

only known symmetric linear reward-penalty automa-
ton that is E-optimal in any random environment. We
will also consider the three-action Discretized Linear

Reward-Penalty (DLap) automaton and show that it is
expedient. We will then state the advantages of these
automata over the traditional learning automata and
proceed to propose their application to the particular
robotics problem.

2.L Fundamentals and Learning Criteria

The automaton considered in this article selects an
action a(n) at each instant ‘n’ from a finite action set
fail i = 1 to R}. The selection is done on the basis of a
probability distribution p(n), an R X 1 vector where

I v r i I i I I &dquo;,&dquo;7’&dquo; -.1

The selected action serves as the input to the envi-
ronment, which gives out a response b(n) at time ’n’;
b(n) is an element of B = (0, 1). The response ‘1’ is
said to be a ’penalty.’ The environment penalizes the
automaton with the penalty ci, where

Thus the environment characteristics are specified by
the set of penalty probabilities f cI3 (i = 1 to R). On the
basis of the response b(n) the action probability vector
p(n) is updated and a new action chosen at (n + 1).
The reward probabilities are 1 - ci for all i.
The (ci) are unknown initially, and it is desired that

 at FLORIDA INTERNATIONAL UNIV on March 28, 2012ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


139

as a result of interaction with the environment the
automaton arrives at the action that evokes the mini-
mum penalty response in an expected sense. It may be
noted that if L is the action that obeys

then pL(n) = 1, p¡(n) = 0 for i =1= L achieves this result.
Updating schemes for p(n) are to be chosen with this
optimal solution in view.
With no a priori information, the automaton

chooses the actions with equal probability. The ex-
pected penalty is thus initially Mo, the mean of the
penalty probabilities. An automaton is said to learn
expediently if, as time tends toward infinity, the ex-
pected penalty is less than M4. We denote the expected
penalty at time ‘n’ as E[M(n)]. The automaton is said
to be optimal if E[M(n)] equals the minimum penalty
probability in the limit as time goes toward infinity. It
is E-optimal if in the limit E[M(n)] < eL + ~ for any
arbitrary E > 0 by the suitable choice of some parame-
ter of the automaton. Thus the limiting value of
E[M(n)] can be as close to cL as desired.

3. The Discretized Linear Reward-Penalty
(DLRP) Automaton

3.1. The Two-Action DLR,,o Automaton

The DLp automaton has (N + 1) states where N is an
even integer. We refer to the set of states as S = {so,
S15 ... , sN). Associated with the state s, is the proba-
bility i/N, and this represents the probability of the
automaton choosing action a, . Note that in this state
the automaton chooses action a2 with probability
(1 1 - i/N). Because any one of the action probabilities
completely defines the vector of action probabilities,
we will, with no loss of generality, consider p,(n).
The basic idea in the learning process is to make

discrete changes in the action probabilities. By defining
the transition map as a function from S X B to S, the
changes in the action probabilities are indeed discrete.
The transition map of the DI,~ automaton is speci-
fied by (4) below for s(n) = sk, 1 :5 k:5 N - 1.

Observe that (4) is valid only for the interior states.
For the end states:

Fig. l. Transition map of the DLRP automaton.

Figure 1 shows the transition map of the automaton

schematically.
Observe that if the machine is in state so, it has to

choose a2, and similarly if it is in sN it has to choose
a 1. Thus the change in action probabilities for 0 <

At the end states the following equality holds:

The action probability updating rule warrants the
name of the automaton. Note that if c, < c~, the auto-
maton has no absorbing barriers except in the degen-
erate cases when c, = 0 or C2 = 1. The homogeneous
Markov chain is defined by a stochastic matrix M
whose arbitrary element M,, is defined as:

In the above, gi = i/N and g’; = 1 - ilN. All the other
elements of M are zero. Furthermore, the boundary
conditions for the Markov chain are specified by

The chain consists of exactly one closed communi-
cating class. Further, because it is aperiodic, the chain
is ergodic and the limiting distribution is independent
of the initial distribution (Ross 1980). Let 7r(n) be the
state probability vector, where, for all n,

Then the limiting value of 1C is given by the vector that
satisfies

Using (9) we now state the asymptotic properties of
the DLW automaton. The proofs of the theorems are
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quite involved, but because they do not contribute to
the fundamental application of the automata in robot
control, they are omitted for the sake of brevity and
continuity. The proofs are found elsewhere (Oommen
and Christensen 1988).

THEOREM 1: Let A = (ct + cz - 1). Then n;, the ith
component of the asymptotic probability vector, obeys
the following difference equation for 1 ~ i - N.

Proof The theorem is proved elsewhere (Oommen
and Christensen 1988). D

THEOREM 2: The DL~ automaton is 6-optimal
whenever the minimum penalty probability is less
than 0.5.

Proof The involved proof of the theorem is found
elsewhere (Oommen and Christensen 1988). 0

Remarks. (i) The question of whether the D4&oelig; au-
tomaton was e-optimal was left open (Oommen
1986b), but Oommen conjectured that the machine
was e-optimal in all environments. As is obvious from
the above, the latter conjecture is false. The ramifica-
tions of the result to get automata that are e-optimal
in all random environments are also described by
these authors (Oommen and Christensen 1988).

(ii) When Tsetlin first designed the Tsetlin automa-
ton, LZ~,2 (or linear tactic), his automaton was the first
(deterministic or stochastic) automaton that could be
proven to possess learning properties. The automaton
was shown to be e-optimal in environments whenever
the minimum penalty probability is less than 0.5. It is
not inappropriate to mention that the DLRp automa-
ton is not a generalized version of the linear tactic but
is distinct in both design and operation for the follow-
ing reasons:

1. Whereas the L2N,2 automaton is a FSSA, the
DL~ scheme is a VSSA. The analytic reasoning
for this is also in the literature (Oommen 1986;
Oommen and Christensen 1988b).

2. In the case of the L2~,2 automaton, the action
probability vector is a deterrninistic vector. In the
case of the D LRP scheme, p(n) is a random vec-
tor. Thus whenever Cl < 0.5, whereas in the
former case the probability pl{~) ~ 1 as N-~ 00,
in the latter case the expected probability
E[Pl(oo)] --~ I as N ~ ~. Thus all the advantages
of VSSA over FSSA (such as that of possessing

the capability of choosing different actions at
almost all consecutive time instances) are found
in the DLp scheme. Additionally, the expected
penalty tends to the value of the minimum pen-
alty probability whenever the latter quantity is
less than 0.5.

Modified absorbing and ergodic versions of the
DL~ automaton that are e-optimal in all random
environments have been presented elsewhere (Oom-
men and Christensen 1988). They are not of direct
relevance to our particular problem and are not de-
scribed here.
The use of the two-action D4u- automaton to

achieve the manipulator control will be discussed later.
Indeed, this automaton commands the joint that it
controls to either go forward or go backward in a dis-
cretized joint space. A generalization of this motion
requires the joint controller to go forward, go back-
ward, or stay at its current location. In order to under-
stand the last motion, we need to study the design and
the properties of the Multi-Action D4u- automaton.
Subsequently, the use of these machines in motion
planning will be presented.

3.2. The Multi-Action DLRPAutomaton
The R-Action D4u- automaton operates in a discre-
tized probability space that divides the probability
space [0,1 ] into NR intervals when N ~ I and does
not divide the probability space at all if N = 0. The ac-
tion-probability vector p(n) is defined by a set of prob-
abilities, [pl(n),P2(n), ... ,p,~(n)]~ where plan) is the
probability with which the automaton chooses action
ai, and the sum of these probabilities is unity. For the
ease of notation, as before, we omit the reference to
the time instant n.

Apart from (15), we constrain each p, such that it
has to be a value on the discretized space. Let 6 =
1 /NR. Then,

The probability updating rule specified by the DLp
automaton in the case of a reward (b(n) = 0) is as
follows for j # i:

The philosophy behind (10) is quite straightforward.
If aj is chosen and the automaton is rewarded, then
each of the other pjs is decremented by 6 if it is posi-
tive. These decrements are then added to p~~(n).
To describe the case of a penalty response, we define

a function RandVect, whose input is an integer k <
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R - 1, and j the index of an action. The output is a
random subset Hk( j ) of k indices from the set
{ 1,2, ... ,R) - (j). Using this notation, we define
the updating rule as below:

The philosophy motivating ( 11 ) is also quite
straightforward. If a~ is chosen and the automaton is
penalized, p; (n) is decremented by (R - 1 )a if p; (n) ~
(R - 1 )~, and this decrement is added to other actions,
distributing the probability mass of 6 for each action
probability. However, if the action probability of the
action chosen has only a value of kb, where k < R - 1,
this probability is decremented to zero, and k possibil-
ities out of the (R - 1) remaining action probabilities
are randomly chosen and each incremented by 6.
We now prove the asymptotic properties of the R-

state DL,~ automaton. Unlike the results of Theorems
1 and 2, because the automaton described above is
completely new to the literature, we believe that the
proof of its asymptotic properties is fundamental to the
results of this paper. The proof is thus presented below.

THEOREM 3: The R-state DLRP automaton is expedi-
ent.

Proof Consider the R-state D4P automaton with
N= 0. In this case, the vector p(n) is a unit vector et,
where ei is the vector with zeros and a unity in the ith
position. By definition, if p(n) = e~, the action chosen
must be aim. Thus, using (10) and (11), the probability
updating rule can be written in the vector form as (12)
below for j * i.

Consider the Markov chain K defined by the states
{ill 1 ~ i ~ R), where K = i if a, is the action chosen by
the automaton. If A is the stochastic matrix defining
the chain it can be seen that by virtue of (12), that A
matrix has the form:

Let x = [7r 1, n2, ... , ~R]T be the limiting asymp-
totic probability vector of the ergodic Markov chain
described by ( I 3). Clearly, x is obtained by solving

7T=~.

n is thus the eigenvector of the eigenvalue of A, which
is unity.

whence nl = J/Rcl , where J is a constant independent
of ’i’ and is equal to

Similarly, n; = J/Rc;, where J is defined above. Be-
cause the vector n is a probability vector, J can be
solved for to yield the value for n; as

Because 7ri is the limiting probability of being in
state i, which is indeed the limiting probability of the
automaton choosing ai, the limiting expected penalty
is M( 00), where,

Indeed, M(oo) is the harmonic mean of {cl). The
expedience is proved from the above by observing that
the harmonic mean of a sequence of numbers is never

greater than that arithmetic mean. 0

Remarks. (i) It can be seen that the above special
case of the R-Action D4u> automaton obtained by set-
ting N = 0, is itself a very general (stochastic) version
of Tsetlin’s LRR automaton (Tsetlin 1961, 1973). Of
course, when N >- 1, the resemblence between the two
families of automata disappears, because Tsetlin’s
automaton is an FSSA, and the D4u> automaton is,
by definition, a VSSA.

(ii) Throughout the rest of the article we will merely
be considering the case when R = 3, primarily because
the actions that we require a joint controller to take
are those of going forward one step in the discretized
joint space, going backward one step, and staying at
the same joint angle. In the case when R = 3, the
probability vector can be drawn graphically as a point
in the plane inside of an equilateral triangle. The
height of the triangle is unity, and the vertices repre-
sent the unit vectors (1,0,0), (0,1,0), and (0,0,1 }. A
point interior to the triangle represents the vector
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Fig. 2. The transition map of the DLRP scheme for the case
whenR=3andN=l.

~P~ ~Pz ~P31T where the quantity p, is the length of the
perpendicular from the point to the ith side of the
triangle.

(iii) When N= I, (i.e., when the probability space is
divided into three equal intervals), there are 10 per-
missible probability vectors. These vectors are repre-
sented by the set of tuples (i, j, k) given below:

Note that the action probability vector represented
by the tuple (i, j, k) is the vector [il3, j/3, k/3]T. The
physical representation of these tuples on the equilat-
eral triangle described above and the transition matrix
describing the Markov chain defined by the Three-
Action DLRp automaton are given in Figure 2 and
Table 1, respectively.
The asympotic efficiency of the automaton can be

studied by computing the stationary probabilities of A
and computing the net average penalty. This has been

done for various penalty probabilities [cl,c2,c3]. In all
cases the performance of the machine is superior to
that of the corresponding machine obtained for N = 0.
We conjecture that the R-action DIRP is E-optimal

whenever cm;n < 0.5. The proof of the above conjec-
ture will be quite involved. Indeed, it will require the
solution of a stochastic tensor equation. However,
simulation results seem to indicate that the conjecture
is true.

4. Manipulator Control Using the DLRP
Automaton

The strategy by which we control the manipulator can
now be proposed, because the theoretical framework
has been laid.

Let us suppose we have a manipulator with I~ joints.
These joints may be revolute or prismatic. The joint
angles can be measured to yield the current position of
the end effector Pl, and this is assumed to be done
quite accurately. The robot is continuously fed with a
noisy version of the Cartesian coordinates of the de-
sired goal position of the end effector Q f(n). Unfortu-
nately, Qf(n) is noisy, and it represents the observable
form of the actual goal position P f, the latter itself
being unknown. Our intention is to control the ma-
nipulator so that it reaches arbitrarily close to Pf. Fur-
thermore, we intend to achieve the task adaptively.
The most straightforward method to achieve this

&dquo;nonadaptively&dquo; is to take a large number of observa-
tions Q¡(n) of Pfand by computing the estimate of Pf
from f Q f(n)}, any straightforward path planning strat-
egy (for example, one using coordinated joint interpo-
lated moves) can be utilized to move the end effector
from Pi to this estimate of Pf. We do not recommend
this strategy for two reasons. First, this scheme is non-
adaptive. Second, in a real environment, the process
of obtaining a large number of observations of Pfcan

Table 1. The Transition Matrix of the DL¡&oelig; Scheme for the Case When R = 3 and N = 1.*

* The transition map of the automaton is given in Figure 2.
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be very time consuming, for it could involve process-
ing as many digital images of the work space. Indeed,
the robot will have to wait while all of these images
are processed before it even starts its motion. Also,
once it does start its physical motion, the time in-
volved is again a large portion of the time that the user
has to spend, because, as is well known, the mechani-
cal motions are often the most time consuming. The
ideal scenario is to plan the motion piecewise, and as
the planned motion is executed mechanically, the
computer plans the next segment of the motion. In-
deed, this can be achieved (for example, in VAL n) by
using motion commands su~xed by the symbol &dquo;!&dquo;.
The strategy that we propose overcomes both of the

above drawbacks. Let us assume that the Two-Action

DLp automaton is the learning machine that is used.
Every joint of the robot is equipped with such a ma-
chine, and each joint independently chooses to either
go forward or go backward in the discretized joint
space. The way by which this motion of going forward
or backward one step is implemented is, of course,
robot dependent.
The learning process of the manipulator is described

as follows. Let V(n) be a criterion function-for ex-
ample, the Euclidian distance between Q f(n) and P~ (n).
Based on the actions stochastically chosen by the indi-
vidual automata, the position of the end effector of the
robot moves to P,(n + 1). The observation Qf(n + 1)
is now obtained and the criterion function computed.
If the latter function is less than it was in IJf(n), each
automaton is rewarded. Otherwise, the automata are
penalized. Based on these responses the action proba-
bilities are locally updated and the process repeated.
When the criterion function is small enough, the pro-
cess is terminated, and a fine motion planning strategy
is invoked.

In the case when the Three-Action DLRP automaton
is the learning machine, each joint is equipped with
such a machine, and each joint is commanded sto-
chastically to go forward, stay where it is, or go back-
ward at every time instant based on the action chosen
by the automaton. Based on this decision, the position
Pi(n + 1) of the end effector is known, and using the
updated observation Q f(n + 1) the criterion function is
recomputed to analogously reward or penalize all the
automata.

Our technique, apart from overcoming the draw-
backs discussed above, has one major advantage. The
strategy does not require the computation of any in-
verse kinematics and is thus extremely effective com-
putationally. Indeed, inverse kinematic and inverse
dynamic solutions can often have scores of parameters
that are position, velocity, and acceleration dependent.
By permitting the automata to perform stochastically

and by repeatedly computing the straightforward crite-
rion function, we have been able to avoid such tedious
computations. Note also that the automata make their
decisions and update their probability vectors inde-
pendently, and hence they can be made to operate in
parallel, thus reducing the actual physical time that
elapses.

It must be noted that unlike most VSSA, maintain-
ing the DLp automata involves incrementing (or
decrementing) just one integer memory location per
action, and furthermore the process of choosing an
action involves invoking a random number generator
exactly once per joint. This is quite appealing.

In both scenarios cited above, all the automata were
either simultaneously penalized or simultaneously
rewarded. If each automaton should get a distinct re-
sponse, one has to consider how each automaton is

performing, as opposed to seeing how the collective
performance of the automata is. Thus in this case, a
criterion function ylxn) can be computed for the ith
joint, and the performance of this joint (in joint space)
must be evaluated. However, this requires, at the very
least, a linearized model of the inverse kinematics and
can be more expensive than the scenarios discussed
above. We will discuss the actual experimental signifi-
cances of these issues in the next section.

5. Experimental Results
The technique that has been suggested in this article
has been rigorously tested for a few simple two-dimen-
sional robots. The first robot, R I, is the familiar
Horn’s Robot (Brady et al. 1983), in which the robot
operates in the plane and the two joints are revolute
joints. The second robot, RZ, is the three-link general-
ization of Horn’s Robot, in which the position and the
orientation of the end effector can be controlled.

Various experiments were conducted in which P,
was specified and noisy versions of Pfwere generated
using noise that had a Gaussian (normal) distribution.
In Figures 3 through 6, circles that represent perturba-
tions of up to three standard deviations of the noise
are presented to show the degree of noise introduced.
Unfortunately, the circles appear elliptic because of
the rectangular screens from which dumps of the
snapshots were obtained for the actual final figures.
Automata with two actions and three actions were

independently used to control the manipulator. In
each case 100 experiments were performed, and the
expected ensemble path of the robot end effector was
traced. Also the expected decrease in the Euclidian
distance from P; (n) to final ideal goal position was also
obtained. The graphs for a typical scenario are shown
in Figure 3A,B for the case when NR = 6 and R = 2.
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Fig. 3. (a) Expected path (given as a sequence of points) of
the two-link Horn’s Robot with links of length unity. The
control is achieved using the DLRP automaton with R = 2
and NR = 6, and with a single response controlling both the
automata. The standard deviation is 0.1 times the link

length. The disk shows the three standard deviation range of
noisy points. (b) Expected change in distance from the initial
configuration to the final mean configuration for the set-up
described in Fig. 3(a).

The decrease in the Euclidian distance from Pfas a
function of n is shown in Figure 3B. The number of
iterations required to converge to a point within the
three-standard deviation circle of the goal position in
this case is approximately 60. Typically, the number
of iterations decreases as the number of states of the
machine increases, and in this case, the path planning
is achieved in as few as 45 iterations for the case when
NR = 8. Similar graphs are available for the case when

Fig. 4. (a) Expected path (given as a sequence of points) of
the two-link Horn’s Robot with links of length unity. The
control is achieved using the DLRP automaton with R = 3
and NR = 9, and with a single response controlling both the
automata. The standard deviation is 0. times the link

length. The disk shows the three standard deviation range of
noisy points. (b) Expected change in distance from the initial
configuration to the final mean configuration for the set-up
described in Fig. 4(a).

R = 3. In Figure 4A we have shown the expected tra-
jectory taken when NR = 9, and the decrease in the
Euclidian distance is shown in Figure 4B. The power
of the scheme is obvious, as the expected trajectory
enters the three - standard deviation disk in only 75
iterations for the case when NR = 12.

In the case when each automaton had three actions

(R = 3) and the automata received distinct responses,
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Fig. 5. (a) Expected path (given as a sequence of points) of
the two-link Horn’s Robot with links of length unity. The
control is achieved using the DLRP automaton with R = 3
and NR = 9, and with a separate response controlling each
automaton. These responses are obtained using first-order
approximations of the inverse kinematics of the robot. The
standard deviation is 0.1 times the link length. The disk
shows the three standard deviation range of noisy points. (b)
Expected change in distance from the initial configuration to
the fcnal mean configuration for the set-up described in Fig.
5(a).

the responses to the automata were obtained by com-
puting the linearized versions of the inverse kine-
matics. These were obtained at any time instant by
solving linear equations involving the &dquo;recent history&dquo;
(i.e., last few Cartesian and joint space coordinates) of
the end effector. The performance of the automaton is
shown in Figure 5A for NR = 9. The corresponding

Fig. 6. (a) Expected path (given as a sequence of points) of
the three-link Horn’s Robot with links of length unity. The
control is achieved using the DLRP automaton with R = 3
and NR = 9, and with a single response controlling all the
automata. The standard deviation is 0.1 times the link

length. The disk shows the three standard deviation range of
noisy points. (b) Expected change in distance fram the initial
configuration to the fcnal mean configuration for the set-up
described in Fig. 6(a).

decrease in the Euclidian distance from Pfas a func-
tion of n is shown in Figure 5B.
Amazingly enough, the different responses do not

improve the collective learning capability of the auto-
mata, but actually degrade it. (cf. Figs. 4B and Figure
5B). This is probably because the parameters that
characterize the environment (namely the set (ci)) are
not, in practice, time invariant. Thus they will change
as the position and the orientation of the robot
changes with regard to the ultimate goal position and
orientation. This change in {c;) seems to be accen-
tuated if the individual distances of the joints are mea-
sured (as opposed to the distance of only the end effec-
tor). However, the latter argument has not been
justified, and we are unaware of an analytic technique
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by which it can be explicitly clarified. It is merely a
plausible argument.

Finally, to study the effect of the scheme for a more
general robot, we have investigated its performance for
the case of the three-link generalization of Horn’s
Robot. A variety of results have been obtained. Typi-
cally, the convergence is shown for the case when
NR = 9 and R = 3 in Figure 6A, and the correspond-
ing decrease in the Euclidian distance is shown in
Figure 6B.
A question may be asked regarding the need for

using the DLp automaton in this application. It has
been well known that the updating function of a learn-
ing automaton must be dependent on the response it
receives from the environment. For example, consider
a continuous VSSA that completely ignores the pen-
alty responses of the environment. Such an automaton
is of the Reward-Inaction type, and it is well known
that there are linear and nonlinear Reward-Inaction
schemes that are both absolutely expedient and E-opti-
mal. Apart from the continuous schemes, indeed as
shown in section IV of Oommen (1986b), even discre-
tized e-optimal schemes of the Reward-Inaction flavor
do exist. However, although the linear symmetric
Reward-Penalty schemes are at their best expedient
(and definitely not absolutely expedient [Narendra and
Thathachar 1989]), Reward-Penalty schemes need not
be entirely rejected. In this article, we have shown that
by discretizing the probability space the resulting sym-
metric automaton is indeed e-optimal wherever emin <
0.5. Furthermore, apart from being e-optimal, the
automaton utilizes all the information provided by the
environment and thus does not ignore any response as
a Reward-Inaction automaton would.
The power of using the scheme suggested in this

article is that the sensing mechanism used need not be
too sophisticated. A primitive sensor working with the
cooperation of such a learning strategy could indeed
provide excellent results.

f . Conclusions and Open Problems
In this article we have considered the problem of con-
trolling a manipulator arm in which Pi the initial posi-
tion of the end effector is known and the goal position
is noisily sensed. The robot is required to move from
Pi to P~, but instead of having P~ specified, a series of
noisy observations, (Q f(n)), of Pf are available.
The solution we propose involves using learning

automata. A new learning automaton, the Two-Action
DLp automaton, has been introduced and proven to
be e-optimal wherever the minimum penalty probabil-
ity is less than 0.5. The general R-action DLRp auto-
maton has been shown to be expedient but is conjec-

tured to be E-optimal in a similar environment. A
DLRP automaton is stationed at each joint of the robot,
and these operate in parallel to control the individual
joints of the robot.

Experimental results that demonstrate the power of
the scheme for two simple two-dimensional robots
have been presented.
We envisage the following future research possibili-

ties :

1. We intend to actually study the power of the
scheme for a real-life robot that has very primi-
tive sensing operations.

2. Preliminary simulation results using various
learning automata seem to suggest that this strat-
egy could lead to fascinating dog-chase motion
strategies that do not involve extensive inverse
kinematic solutions. This avenue remains open.

3. We have also recently discovered two new fami-
lies of discretized Reward-Penalty automata that
are E-optimal in all random environments. We
hope to study the use of these automata to
achieve more effective path planning.
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